Grasp of Evidence Framework: From Theory to Practice

Webinar Prof. Ravit Golan Duncan (Rutgers University)

Kategorie
Webinare
Datum
21.6.2023

Why managing AI risk presents new challenges

Aliquet morbi justo auctor cursus auctor aliquam. Neque elit blandit et quis tortor vel ut lectus morbi. Amet mus nunc rhoncus sit sagittis pellentesque eleifend lobortis commodo vestibulum hendrerit proin varius lorem ultrices quam velit sed consequat duis. Lectus condimentum maecenas adipiscing massa neque erat porttitor in adipiscing aliquam auctor aliquam eu phasellus egestas lectus hendrerit sit malesuada tincidunt quisque volutpat aliquet vitae lorem odio feugiat lectus sem purus.

  • Lorem ipsum dolor sit amet consectetur lobortis pellentesque sit ullamcorpe.
  • Mauris aliquet faucibus iaculis vitae ullamco consectetur praesent luctus.
  • Posuere enim mi pharetra neque proin condimentum maecenas adipiscing.
  • Posuere enim mi pharetra neque proin nibh dolor amet vitae feugiat.

The difficult of using AI to improve risk management

Viverra mi ut nulla eu mattis in purus. Habitant donec mauris id consectetur. Tempus consequat ornare dui tortor feugiat cursus. Pellentesque massa molestie phasellus enim lobortis pellentesque sit ullamcorper purus. Elementum ante nunc quam pulvinar. Volutpat nibh dolor amet vitae feugiat varius augue justo elit. Vitae amet curabitur in sagittis arcu montes tortor. In enim pulvinar pharetra sagittis fermentum. Ultricies non eu faucibus praesent tristique dolor tellus bibendum. Cursus bibendum nunc enim.

Id suspendisse massa mauris amet volutpat adipiscing odio eu pellentesque tristique nisi.

How to bring AI into managing risk

Mattis quisque amet pharetra nisl congue nulla orci. Nibh commodo maecenas adipiscing adipiscing. Blandit ut odio urna arcu quam eleifend donec neque. Augue nisl arcu malesuada interdum risus lectus sed. Pulvinar aliquam morbi arcu commodo. Accumsan elementum elit vitae pellentesque sit. Nibh elementum morbi feugiat amet aliquet. Ultrices duis lobortis mauris nibh pellentesque mattis est maecenas. Tellus pellentesque vivamus massa purus arcu sagittis. Viverra consectetur praesent luctus faucibus phasellus integer fermentum mattis donec.

Pros and cons of using AI to manage risks

Commodo velit viverra neque aliquet tincidunt feugiat. Amet proin cras pharetra mauris leo. In vitae mattis sit fermentum. Maecenas nullam egestas lorem tincidunt eleifend est felis tincidunt. Etiam dictum consectetur blandit tortor vitae. Eget integer tortor in mattis velit ante purus ante.

  1. Vestibulum faucibus semper vitae imperdiet at eget sed diam ullamcorper vulputate.
  2. Quam mi proin libero morbi viverra ultrices odio sem felis mattis etiam faucibus morbi.
  3. Tincidunt ac eu aliquet turpis amet morbi at hendrerit donec pharetra tellus vel nec.
  4. Sollicitudin egestas sit bibendum malesuada pulvinar sit aliquet turpis lacus ultricies.
“Lacus donec arcu amet diam vestibulum nunc nulla malesuada velit curabitur mauris tempus nunc curabitur dignig pharetra metus consequat.”
Benefits and opportunities for risk managers applying AI

Commodo velit viverra neque aliquet tincidunt feugiat. Amet proin cras pharetra mauris leo. In vitae mattis sit fermentum. Maecenas nullam egestas lorem tincidunt eleifend est felis tincidunt. Etiam dictum consectetur blandit tortor vitae. Eget integer tortor in mattis velit ante purus ante.

Abstract

Comprehending and evaluating scientific evidence is not trivial, especially in the current "post truth" era with its rampant misinformation and fake news. Moreover, evaluating scientific evidence (even simplified evidence presented in the media) entails some disciplinary knowledge of core concepts in the domain and an understanding of the epistemic criteria for what counts as good evidence in that domain. In this presentation I will review the Grasp of Evidence framework for reasoning with evidence and illustrate the ways in which this framework has guided our design of learning environments and our analyses of student engagement with evidentiary reasoning. In particular, the learning environments we have designed provide students with opportunities to engage with an array of diverse evidence in order to determine which of two or more models better explains the scientific phenomenon they are trying to understand. The evidence provided to them varies in quality in terms of its source (anecdotal versus generated by experts), the method (sample size, controlling for confounds, etc.), and how conclusive it is in supporting or refuting the competing models. Our analyses of student' written arguments and class discussions about evidence and models reveal sophisticated use of epistemic ideals and reliable processes.

CV

Ravit Golan Duncan is a Professor of Learning Sciences with a focus on Science Education at the Rutgers Graduate School of Education. She has several lines of research that focus on epistemic practices, justice-oriented teaching, and learning progressions. She spends much of her time designing instructional materials that are aligned with the Next Generation Science Standards and that also promote meaningful and consequential learning for students. Dr. Duncan coordinates and teaches in the Biological Sciences Certification Program; preparing the future secondary teachers in New Jersey. She is an Associate Editor for the Journal of the Learning Sciences and a section Co-Editor of Science Education. This year she is the President-Elect of the International Society of the Learning Sciences.

Webinar

The webinar will be held online via Zoom in English.
Zoom-Link: https://hu-berlin.zoom.us/j/69243528648
Meeting-ID: 692 4352 8648

Wenn Sie auf “Akzeptieren” klicken, stimmen Sie der Speicherung von Cookies auf Ihrem Gerät zu, um die Navigation auf der Website zu verbessern. Weitere Informationen finden Sie in unserer Datenschutzrichtlinien.