Scientific Highlight

Development of an assessment tool for collaborative problem-solving skills in chemistry - Yike Ying und Rüdiger Tiemann

Kategorie
Aktuelles
Datum
2.12.2024

Why managing AI risk presents new challenges

Aliquet morbi justo auctor cursus auctor aliquam. Neque elit blandit et quis tortor vel ut lectus morbi. Amet mus nunc rhoncus sit sagittis pellentesque eleifend lobortis commodo vestibulum hendrerit proin varius lorem ultrices quam velit sed consequat duis. Lectus condimentum maecenas adipiscing massa neque erat porttitor in adipiscing aliquam auctor aliquam eu phasellus egestas lectus hendrerit sit malesuada tincidunt quisque volutpat aliquet vitae lorem odio feugiat lectus sem purus.

  • Lorem ipsum dolor sit amet consectetur lobortis pellentesque sit ullamcorpe.
  • Mauris aliquet faucibus iaculis vitae ullamco consectetur praesent luctus.
  • Posuere enim mi pharetra neque proin condimentum maecenas adipiscing.
  • Posuere enim mi pharetra neque proin nibh dolor amet vitae feugiat.

The difficult of using AI to improve risk management

Viverra mi ut nulla eu mattis in purus. Habitant donec mauris id consectetur. Tempus consequat ornare dui tortor feugiat cursus. Pellentesque massa molestie phasellus enim lobortis pellentesque sit ullamcorper purus. Elementum ante nunc quam pulvinar. Volutpat nibh dolor amet vitae feugiat varius augue justo elit. Vitae amet curabitur in sagittis arcu montes tortor. In enim pulvinar pharetra sagittis fermentum. Ultricies non eu faucibus praesent tristique dolor tellus bibendum. Cursus bibendum nunc enim.

Id suspendisse massa mauris amet volutpat adipiscing odio eu pellentesque tristique nisi.

How to bring AI into managing risk

Mattis quisque amet pharetra nisl congue nulla orci. Nibh commodo maecenas adipiscing adipiscing. Blandit ut odio urna arcu quam eleifend donec neque. Augue nisl arcu malesuada interdum risus lectus sed. Pulvinar aliquam morbi arcu commodo. Accumsan elementum elit vitae pellentesque sit. Nibh elementum morbi feugiat amet aliquet. Ultrices duis lobortis mauris nibh pellentesque mattis est maecenas. Tellus pellentesque vivamus massa purus arcu sagittis. Viverra consectetur praesent luctus faucibus phasellus integer fermentum mattis donec.

Pros and cons of using AI to manage risks

Commodo velit viverra neque aliquet tincidunt feugiat. Amet proin cras pharetra mauris leo. In vitae mattis sit fermentum. Maecenas nullam egestas lorem tincidunt eleifend est felis tincidunt. Etiam dictum consectetur blandit tortor vitae. Eget integer tortor in mattis velit ante purus ante.

  1. Vestibulum faucibus semper vitae imperdiet at eget sed diam ullamcorper vulputate.
  2. Quam mi proin libero morbi viverra ultrices odio sem felis mattis etiam faucibus morbi.
  3. Tincidunt ac eu aliquet turpis amet morbi at hendrerit donec pharetra tellus vel nec.
  4. Sollicitudin egestas sit bibendum malesuada pulvinar sit aliquet turpis lacus ultricies.
“Lacus donec arcu amet diam vestibulum nunc nulla malesuada velit curabitur mauris tempus nunc curabitur dignig pharetra metus consequat.”
Benefits and opportunities for risk managers applying AI

Commodo velit viverra neque aliquet tincidunt feugiat. Amet proin cras pharetra mauris leo. In vitae mattis sit fermentum. Maecenas nullam egestas lorem tincidunt eleifend est felis tincidunt. Etiam dictum consectetur blandit tortor vitae. Eget integer tortor in mattis velit ante purus ante.

Collaborative problem-solving (CPS) skills are recognised as an essential aspect of 21st century skills and STEM education. In the STEM framework, students’ CPS skills in the learning process need to be appropriately monitored, yet assessment tools for students’ CPS skills are currently not widely developed in chemistry. This study aimed to develop and validate the assessment tool for measuring high school students’ collaborative problem-solving skills in chemistry (CPS-C). Fifty-two students participated in the assessment, which included tasks on Coke Titration, Fruit Battery, and Soap Making. The data were analyzed using Multidimensional Item Response Theory (MIRT) models and the Generalized Partial Credit Model (GPCM). The results indicated that the CPS-C tool showed good internal consistency and item fit. Additionally, ten students were interviewed, and the interview content was analyzed using MAXQDA, emphasizing the importance of providing clear and concise instructions, reducing the number of tasks, and offering meaningful and relevant options. Moreover, this study also validated the reliability of cognitive ability tests, mental load and effort tests, and interest and motivation tests. The results showed satisfactory reliability for all tests except for the mental load and effort tests, which had a lower reliability coefficient of 0.68. Despite some limitations, the CPS-C tool showed great potential for effectively assessing CPS skills. Further research is needed to validate the tool’s effectiveness and reliability across larger, more diverse samples and different cultural contexts.

DOI: https://doi.org/10.1186/s43031-024-00116-6

Wenn Sie auf “Akzeptieren” klicken, stimmen Sie der Speicherung von Cookies auf Ihrem Gerät zu, um die Navigation auf der Website zu verbessern. Weitere Informationen finden Sie in unserer Datenschutzrichtlinien.